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An Application of Optimal 
Control to the Economics of 
Recycling* 

Jannett Highfillt 
Michael McAseyt 

Abstract. A city's landfill is an exhaustible resource; recycling is a backstop method of waste disposal. 
We formulate an optimal control model that maximizes the total utility of a representative 
consumer by choosing the appropriate levels of the two disposal techniques. The model is 
simple enough that some general conclusions can be drawn, and yet specific solutions will 
require some computations that show a few of the possibilities in optimal control problems. 
Among the primary results is that once recycling begins, it will increase. It is also likely 
that the level of recycling will assume the values at the endpoints of its domain as well as 
the more standard values in the interior. 
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Since the 1960s, economists have been using techniques of optimal control to solve 
both theoretical and applied optimization problems. Seierstad and Sydsaeter's book 
[16] contains many examples of such problems. Optimal control techniques have been 
used in the exhaustible resources literature, recently in considering the problems of 
(solid) waste management. Traditionally, landfilling has been the principal method 
of municipal waste disposal. But since landfill capacity is an exhaustible resource, 
municipal recycling (the recycling of household waste done by (or for) a municipality) 
has become increasingly important. Most states in the United States now require 
some recycling by municipalities [8]; such legislation is often motivated in part by 
the desire to conserve landfill space. Recycling, however, is a more expensive waste 
disposal method than landfilling (even allowing for revenue it might generate for the 
municipality). 

Thus, the municipality's waste management problem can be thought of in the 
context of the exhaustible resources literature as a problem of optimal use of an ex- 
haustible resource (landfill capacity) when a backstop waste disposal technology (recy- 
cling) exists. A "backstop technology" is characterized as one that is more expensive 
but has unlimited capacity. This paper's results are restricted to municipalities with 
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only these two methods of waste disposal-a simplifying assumption since, of course, 
other backstop waste disposal technologies (e.g., incineration) exist.1 

Similar landfilling/recycling optimal control problems are found in Huhtala [11] 
and Highfill and McAsey [9, 10]. By considering the net benefits of waste disposal 
services, Huhtala [11] found conditions for an optimal switch from an old landfill to a 
new one. The present paper is an extension of Huhtala [11] and Highfill and McAsey 
[9] in that it allows for income growth over time rather than assuming income to be 
constant. Highfill and McAsey [10] allowed for income growth but relied heavily on 
specific functional forms (for utility and costs); the present paper does not. Another 
difference between the present paper and [10] is that the latter supposed that con- 
sumers derive utility from recycling per se, while the present paper supposes that 
consumers value recycling only indirectly as a method of waste disposal. Other ap- 
proaches to municipal recycling are found in the literature, e.g., Huhtala [12], Calcott 
and Walls [1], Fullerton and Kinnaman [6], Fullerton and Wolverton [7], and Ley, 
Macauley, and Salant [13]. The empirical literature on municipal recycling is grow- 
ing quickly. Notable recent contributions are Craighill and Powell [2], Tiller, Jakus, 
and Park [18], Sterner and Bartelings [17], Nestor and Podolsky [14], and Tucker [19]. 
There is an extensive literature on backstop technologies in a context other than waste 
management; see Dasgupta and Heal [3], Prell [15], and Endress and Roumasset [4]. 

The primary result of the paper is the prediction that recycling, once begun, will 
always increase in a community whose income is increasing. This result holds even 
though recycling is not an argument of the utility function and the per unit cost of 
recycling increases with the amount of recycling (and the total recycling cost function 
is convex). The only exception to the result is trivial: some municipalities have land- 
fills sufficiently large so that they never recycle. By using comparative dynamics, it 
is also seen that smaller initial landfill capacities imply greater reliance on recycling. 
The main message for classroom use is that although the necessary conditions from 
the optimal control problem are certainly important in understanding the optimal 
path, the endpoint conditions are equally important, and, in general, an optimal path 
requires an understanding of both the necessary and endpoint conditions. This ma- 
terial is appropriate for a two-day unit in a natural resources course, providing an 
example of an exhaustible resource/backstop problem in waste disposal technologies. 
It might also fit in an undergraduate course in modeling, optimization, applied math- 
ematics, or mathematical economics, or even a course in dynamic optimization for 
graduate students in economics. Several numerical examples are included and two 
sets of exercises are provided. 

I. The Model. A municipality (city, county, etc.) is composed of a number of 
individuals. The decision making of the municipality is modeled by considering a 
"representative consumer" who might be thought of as the typical or average resident 
of the municipality. Let c(t) be the rate of consumption of the aggregate good (i.e., 
food, shelter, clothing, recreation, etc.) by the representative consumer. All consump- 
tion is assumed to become waste which must be disposed of by either landfilling or 
recycling: c(t) = x(t) + z(t), where x(t) denotes the rate at which waste is recycled 
and z(t) the rate at which waste is deposited in a landfill.2 

1In 1997 the United States landfilled 55% of all waste; 27% was recycled or composted; and 17% 
was incinerated. But waste disposal methods vary considerably by region. In Illinois, for example, 
in 1998, 69% of waste was landfilled, 28% recycled, and 3% incinerated. 

2The proportion of consumption that becomes waste could be set at something other than 100%. 
For example, ca c(t) = x(t) + z(t), 0 < a < 1. The analysis would be essentially unchanged as long 
as a is exogenous. 
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Landfill capacity is considered to be an exhaustible resource. Specifically, let so 
be the initial landfill capacity, s(t) > 0 be the amount of landfill available at time 
t, and T be the planning horizon. (Typical planning horizons in counties are 5-15 
years.) Landfill use is thus constrained by 

rt 
s(t)= so - z(r) dT. 

It will be convenient in the optimal control problem to write this constraint as a 
differential equation: ds/dt = -z(t) with the initial condition s(O) = so. 

Recycling is a more expensive waste disposal method than landfilling; any revenue 
it may generate is small in comparison with other expenses. Thus, recycling is a 
backstop waste disposal technology. Denote the cost per unit of recycling by 3(t, x), 
a nonnegative, smooth function. Assume that the per unit cost of recycling increases 
as the amount of recycling increases (time held constant) so that 3x(t, x) > O. The 
idea here is that it is less expensive per unit to recycle bottles and newspapers than it 
is to recycle bottles, newspapers, and refrigerators. Assume also that the per unit cost 
of recycling is nonincreasing over time (with the amount of recycling held constant) 
so that 3t(t,x) < 0. This is a standard assumption in the exhaustible resources 
literature; cf. Dasgupta and Heal [3, p. 179]. The total cost of recycling is 3(t, x)x(t) 
(i.e., the product of the per unit recycling cost 3 and the recycling rate x). Total cost 
is assumed to be a convex function of x, which implies Pxx(t, x)x(t) + 2/x(t, x) > 0. 
Finally, it is assumed that 3xt(t,x) < 0, i.e., that an increase in t will not increase 
O3x(t,x). 

In addition to the disposal constraint c(t) = x(t)+z(t), the consumer is bound by 
a budget constraint. To construct this, suppose first that the representative consumer 
has an income Y(t) that grows over time: Y(t) (= dY/dt) > 0. Since recycling is 
more expensive than landfilling, it can be assumed that the "out-of-pocket" cost 
of landfilling is zero. Finally, the units of measurement can be chosen so that the 
(exogenous) price of the consumption good is set at 1 and all other costs are measured 
relative to the price of the consumption good.3 Thus, the instantaneous budget 
constraint is c(t) + f(t, x(t))x(t) < Y(t). 

As is standard in economics, it is assumed that the objective of the consumer is 
to maximize the total discounted "utility," an abstraction representing satisfaction 
or happiness. More specifically, a utility function is a realization of a preference 
relation between various levels of consumption. The representative consumer prefers 
more consumption to less, and while the marginal satisfaction he or she receives from a 
unit of consumption declines as consumption increases, marginal satisfaction is always 

3The budget constraint (1.4) can be derived from a set of less simplistic assumptions as follows. 
Suppose the price of consumption is given as pc, the per unit cost of landfilling waste pz, the per 
unit cost of recycling px, and nominal income I(t). (These subscripts are not meant to denote 
partial derivatives and will only be used in this note.) In keeping with the preceding assumptions 
that recycling is the more expensive waste disposal alternative, assume that px > pz. The budget 
constraint is thus pc c(t) + pz z(t) + px x(t) < I(t). Noting that c(t) = x(t) + z(t), this simplifies 
to (pc + pz) c(t) + (px -pz)x(t) < I(t), which can now be written c(t) + 3x(t) < Y(t), where 

- = (px- Pz)/(pc + pz) and Y(t) = I(t)/(pc + pz). In this paper, we generalize this budget 
constraint by allowing for the possibility that /3 is a function of both the amount of recycling and 
time. 

The units of measurement in solid waste management are often either "gate cubic yards" or 
tons. The relationship between the two units is set by an industry practice of dividing gate cubic 
yards by 3.3 to approximate tons. Prices are measured in dollars per unit quantity. The "trick" of 
essentially setting the price of the consumption good at 1 is referred to by saying that the price of 
consumption is the numeraire price. 
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positive. (This "nonsatiety" assumption may not hold for some few individuals in the 
real world; however, it is certainly the case that municipalities as a whole satisfy the 
assumption.) Letting U(c) be the utility of consumption, these assumptions4 imply 
U'(c) > 0, U"(c) < 0. 

The discounting mentioned above reflects consumer preferences for immediate 
consumption rather than deferred consumption. This has been a point of contention 
in the natural resources literature, but is included here in a form that can allow for 
no discounting. Let p be the discount rate-usually around 2% or 3% (although the 
primary result of the paper is unchanged if there is no discounting, i.e., if p = 0). The 
problem for the representative consumer is 

T 

(1.1) max U(c(t))e-Ptdt 
C,X,Z jQ 

subject to 

(1.2) = -z(t), s(O) - so, 

(1.3) c(t) = x(t) + z(t), 

(1.4) c(t) + (t, x(t)) x(t) < Y(t), 

(1.5) x(t), z(t) > 0. 

In fact, the budget constraint (1.4) must be an equality. If it were a strict inequality, 
then some of the "excess" income could be used to increase consumption and hence 
increase total utility. (Subsequent discussion will always refer to (1.4) as an equality.) 
Because of the concavity of the utility function and linearity of constraints, it is not 
hard to see that an optimal solution exists (Theorem 6.2.1 of Seierstad and Sydseeter 
[16, p. 358]) and is continuous (Theorem 6.1 of Fleming and Rishel [5, p. 75]). 

The Hamiltonian for this problem is 

H = U(c(t)) e-Pt - Az(t) 

and, incorporating the two constraints, the Lagrangian is 

L = H - l[c(t) - x(t) - z(t)] - 2[c(t) + /(t, x(t))x(t) - Y(t)]. 

Pontryagin's maximum principle (cf. Seierstad and Sydsaeter [16, p. 275]) says that 
at an optimal solution, it is necessary that the Hamiltonian-Lagrangian, considered 
as a function of the controls c, x, and z, be maximized and that the derivative of 
the Lagrangian is zero on intervals where the controls are continuous. So, necessary 
conditions are 

(1.6) L, = U'(c(t)) e-Pt - - l = 0, 

4It is also assumed that the utility function is such that c(t) > 0 for all t because if consumption 
is zero, then both recycling and landfilling must be zero and the optimization problem becomes 
uninteresting. One way to insure that c(t) > 0 is to place hypotheses on the utility function. 
A common hypothesis is that limc_0+ U'(c) = +oo. Utility functions such as U(c) = logc or 
U(c) = c', 0 < a < 1, guarantee that there is some consumption for all t > 0. 
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(1.7) Lx = I1 - 12 [O3(t, x(t)) (t) + 3(t, x(t))] < 0, x(t) > 0, 

(1.8) Lz = - < 0, z(t) > 0, 

(1.9) - 0. 

The last condition follows from the requirement that = -aH/as and the fact that 
H is not explicitly dependent on the state variable s. In fact, A is nonnegative in this 
problem. 

Since it is required that c(t), x(t), and z(t) all be nonnegative, there exists an 
expression that serves as an upper bound for x(t). To be more explicit, note that at 
any time t, the relationship c(t) = x(t) + z(t) implies that the maximum amount of 
recycling occurs when there is no landfilling (i.e., z(t) = 0). But if z(t) = 0, then 
c(t) = x(t) and the budget constraint implies x(t) + 3(t, x(t))x(t) = Y(t). It can be 
checked (using a form of the implicit function theorem, if desired) that the resulting 
equation Y(t) = (1 + P(t, x(t)))x(t) gives x implicitly as a function of t, and this 
function describes the amount of recycling when there is no landfilling. Thus, for all 
t, x(t) is constrained to lie in the ("implicit") interval 0 < x(t) < Y(t)/(l+0P(t, x(t))). 

The implications of these remarks will be developed more fully shortly, but the 
general shape of the functions can be summarized as follows. In general, the planning 
horizon decomposes into three intervals. On the first interval, 0 < t < t1, the Hamil- 
tonian is maximized with an endpoint solution, x(t) = 0: the municipality is doing 
no recycling and all waste is going to the landfill; on the second interval, tl < t < t2, 
the necessary conditions (1.6)-(1.9) are operative and the municipality is both recy- 
cling and landfilling; finally, for t2 < t < T, an endpoint solution is also obtained: 
the landfill is exhausted so that z(t) = 0, and recycling occurs at its maximal level 
described above as an implicit function. 

2. Results. This section describes the properties of the solution that can be 
gleaned from the necessary conditions (1.6)-(1.9). It is first shown that these condi- 
tions imply that recycling is growing, x(t)(= dx/dt) > 0, during an interval of time 
when the municipality is simultaneously landfilling and recycling. This in turn allows 
us to describe the general shape of the x(t) curve. The section concludes with a 
comparative dynamic analysis of the effect of different sizes of landfills, so. 

2.1. The Recycling Path, x(t). Suppose that there is an interval tl < t < t2 

during which the municipality is both landfilling and recycling. For such t, the neces- 
sary conditions (1.6)-(1.9) hold with 0 < x(t) < Y(t)/(1 + P(t, x(t))). Then z(t) > 0 
as well, so both recycling and landfilling are occurring. The necessary conditions in 
this case imply Lx = 0 and Lz = O. The latter equation implies that A/l = A, and so 
Lx = 0 implies 22 = A (3x(t, x(t))x(t) + f3(t, x(t)))- . Using these representations in 
the remaining condition Lc = 0 gives 

(2.1) U'(c(t)) e- ( + (t x(t))x(t) + P(t, (t))) 

This equation will allow us to determine the sign of x(t), as shown next. 
Multiply both sides of (2.1) by ePt, take the time derivative of both sides (and 

suppress the time arguments of functions) to get 

(2.2) U"(c)c =Aept p 1( (( 
+ 
+2x)X 

+ ( + ) + (2>2) 
+^c=xe K ^ 3^ ((xX + /3)2 
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Use the budget constraint c(t) = Y(t) - P(t, x(t))x(t) to calculate c: c = Y - (f3xx + 
ftx + /3). Substitute this expression into the left-hand side of (2.2) to get 

(2.3) U"(c)(Y - (Pxx + 3tx + 3ix)) = U"(c)(Y - t3x) - U"(c)(3x + f)x. 

Rewrite the right-hand side of (2.2) as an affine function of x: 

(2.4) A ' 
p (3xtx ) 

+ 
e -) 

(p x + )2 
X 

POI( + i (OXX + 3)2 X- 

Equate the right-hand side of (2.3) and expression (2.4) and solve for x to get 

U"(c)(I - )tX) - AePt[p(l + x+) - (t+:)] 

( =) U"(c)(/xx + 3) - AePt(3xx + )-2(/3XZX + 2fx) ' 

Recall that by assumption, U" < 0, Pt < 0, !xt < 0, and /3xx + 2px > 0. All other 
quantities are positive, including A. (It can be shown that A = 0 only when x(t) = 0 
for all t.) It follows that both the numerator and the denominator are negative, 
making x(t) > 0. So on any interval during which both landfilling and recycling are 
occurring, the rate of recycling is increasing. This is the primary result promised in 
the introduction. 

The preceding information on the sign of x is enough to allow us to construct 
a typical recycling function on [0,T]. Recall first that x(t) is continuous. Let T = 
{t E [0,T] : 0 < x(t) < Y(t)/(l + i3(t,x(t)))} and let tl = inf T, while t2 = supT. 
Since x(t) > 0 on T, t1 < t2. For the purposes of the discussion here, we will assume 
0 < t < t2 < T and explain later what may occur if this condition does not hold. By 
continuity, x(ti) = 0 and so x(t) = 0 for t < t1. That is, the x(t) part of the solution 
to conditions (1.6)-(1.9) is the zero endpoint of the interval of admissible values for 
x(t). For t > t2, again by continuity, x(t) must be at the maximum allowable value. 
So for t > t2, x(t) is the function given implicitly by Y(t) = (1 + f(t, x(t)))x(t) and 
z(t2) = 0. It is easy to check that x(t) given by the preceding equation is increasing. 
Indeed, taking the time derivative of both sides gives 

Y(t) = (1 + 3(t, x(t)))x(t) + (ft(t, x(t)) + Px,(t, x(t)).x(t))x(t). 

Solve for x to get 

Y(t) - t3(t, x(t))x(t) 
1 + 3(t,x(t)) + ,(t,x(t))x(t) 

A description of the optimal recycling path, x(t), is now possible. In general the 
recycling path is piecewise defined, with three pieces.5 For the period of time before 
tl, all waste is landfilled and thus recycling is zero. At t1, recycling begins and it 
increases for the rest of the planning period. At time t2 the landfill is exhausted and 
so all waste is disposed of by recycling. 

2.2. The Comparative Dynamics of Landfill Capacity, so. A key parameter for 
a city is the initial size of its landfill, so. The objective of comparative dynamics is to 
determine the effect of so on consumption, recycling, landfilling, and the "user cost." 

5It should be noted that depending on the functional forms and parameter values, a particular 
recycling path might not have all three pieces of a solution; a municipality might, for example, have 
sufficient landfill capacity that recycling never begins. 
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This is accomplished by investigating the derivative of these items with respect to so. 
Begin by writing the landfill capacity constraint as 

rT rtl t2 
(2.5) = j z(t)dt = Y(t)dt+ z(t)dt, 

recalling that c(t) = z(t) = Y(t) for t < t1. Since ti, t2, and A all depend (implicitly) 
on the parameter so, we differentiate (2.5) with respect to so: 

dtl d12 d, 
2 
(t)2 

(2.6) 1 = Y(tl) - + z(t2)- - (t)- + X ) dt. 
ds+ dso dso aso 

To determine the sign of az(t)/so we begin by showing that the first three terms on 
the right side of (2.6) yield zero. Since x(t) = 0 for 0 < t < ti, we have z(t) = Y(t) on 
the interval (0, tl) from (1.3)-(1.4). Recall that the optimal solutions are continuous 
as functions of t, so continuity of z(t) implies z(ti) = Y(t1). Since the landfill is 
exhausted at t2, all landfilling stops and continuity implies z(t2) = 0. We refer to the 
two conditions z(ti) = Y(tl) and z(t2) = 0 as "continuity conditions." As will be seen 
in the next section, these two equations together with the landfill capacity constraint 
will enable the computation of tl, t2, and the adjoint variable A and thus complete 
the construction of the solutions c(t), x(t), and z(t). For now, it follows from the 
continuity conditions that the sum of the first three terms on the right side of (2.6) 
is zero, leaving 1 = ftt2 z(t)/asodt. Thus, az(t)/so must be positive on some time 
interval inside (tl, t2). To determine the signs of the derivatives of the other controls 
as functions of initial landfill capacity, use (1.3)-(1.4) to eliminate c(t) and write z(t) 
as a function of x(t): z(t) = Y(t) - (1 + 3(t, x(t)))x(t). Differentiate with respect 
to so to get 

(2.7) z(t)= -(1 + /(t,x(t)) +x ,(t, (t))x(t)) 
aso aso 

and from constraint (1.4), 

ac(t) ax(t) 
(2.8) = -(3(t, x(t))xt)) , (tX(t)) 

These two conditions imply that for the time interval during which az(t)/aso > 0 it 
is also the case that ax(t)/0so < 0 and Oc(t)/aso > 0. 

As discussed in the next paragraph, it is also of interest to determine the effect 
of landfill size on the adjoint variable A. Differentiate (with respect to so) the neces- 
sary condition as expressed in (2.1) (and suppress the arguments of functions in the 
notation): 

(2.9) U"e-Pt a + AxxXz 
+ 2x dX ( + 

1 
) 

aso (f3xx + 0)2 aso 1? i3x + 3) aso 

Thus, for the time interval when az(t)/aso > 0 (and hence ax(t)/aso < 0 and 
ac(t)/so > 0) it follows that aA/aso < 0. But since A does not vary with time, 
aA/aso < 0 for the entire planning period. To summarize, 

z(t) > 0 (t) , c(t) > , and < 
so as aso so s 

for the entire interval of time between tl and t2. 
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To interpret these results, it is helpful to define the maximized value of the ob- 
jective function (1.1) (which gives the total discounted utility for the representative 
consumer) as an implicit function of so: V(so). It can be shown that the adjoint 
variable A is dV/dso [16, p. 210]. Thus, A is interpreted as the marginal value of an 
increase in initial landfill space. In the exhaustible resources literature A is sometimes 
called the "user cost." The interpretation of V"(so) = dA/dso < 0 is simply that 
increases in initial landfill capacity so (all other factors being constant) will decrease 
the user cost. 

The only exception to this result is when (for some functional forms and sets of 
parameter values) A is zero, in which case the landfill is not exhausted, the landfill 
capacity constraint is not binding, and no recycling is done. In the more typical 
cases, i.e., for municipalities for which the landfill capacity constraint is binding, any 
small decrease in initial capacity so increases the user cost, i.e., increases the marginal 
value of an increment of landfill capacity. It also follows in this case that a decrease in 
initial capacity so implies an increase in the amount recycled at any moment (except, 
of course, for the time period when recycling is 0). An increase in landfill capacity 
implies a decrease in recycling. Intuitively, the model predicts that the more landfill 
capacity a municipality has, the less it needs to recycle and the more landfilling it 
will do. Further, consumption at any fixed time between tl and t2 will increase with 
an increase in so (and will stay the same for t < tl and t > t2). So it follows that 
an increase in landfill capacity increases total discounted utility unless, of course, the 
landfill capacity is so large that the landfill constraint is nonbinding. 

3. Examples and Exercises. This section considers a couple of examples show- 
ing how the constraints and the necessary and endpoint conditions can be used to 
characterize an optimal solution. Exercises that apply and extend the analysis in var- 
ious ways are also given. The examples and exercises consolidate the recycling results 
above and show the diversity of other aspects of an optimal waste management plan 
such as consumption and landfilling. Note, however, that the parameter values chosen 
for the examples and exercises are illustrative only and are not meant to be those of 
any particular city. 

3.1. Example 1. Assume a utility function U(c(t)) = Inc(t). The log function 
is a common choice for an example of a utility function in that it is increasing and 
concave and some consumption is always optimal: c(t) > 0. Assume that income 
is growing exponentially: Y(t) = Yo e6t, where a is the growth rate of income. To 
illustrate optimal controls with the most general form, we assume that the landfill 
constraint is binding, so that the user cost A is positive. Finally, in this first example, 
assume that the per unit recycling cost is a positive constant, P(t, x(t)) - (3. 

While recycling is increasing for tl < t < t2 as shown in section 2, in this ex- 
ample, as will be seen, consumption and landfilling decrease during this time inter- 
val. Since U'(c(t)) = l/c(t), equation (2.1), which holds between tl and t2, implies 
c(t) = (P/(A(1 + /)))e-Pt. Recalling from (1.9) that A is constant (and positive), this 
immediately implies c(t) < 0 for t in (tl, t2). Rewrite the budget constraint (1.4) as 
x(t) = (Y(t) - c(t))/: so that x(t) = (Yo/P)et- (1/(A(1 + /)))e-Pt. Use the disposal 
constraint (1.3) to write z(t) = c(t) - x(t) = (1/A)e-Pt - (Yo//)et. It follows that 

z(t) <0 in (tl, t2). 
To completely identify the three functions c(t), x(t), and z(t), it remains to com- 

pute tl, t2, and A. Recall that tl is defined as the "last time" at which recycling is 

686 



THE ECONOMICS OF RECYCLING 

zero. Thus, c(tl) = Y(tl) = z(tl) and so (from the latter equality) 

Y tl e-ptl Yoe6tl 

Yoe= 
e 

Similarly, t2 is defined as the "first moment" at which landfilling is zero, i.e., z(t2) = 0 
and so 

e-Pt2 YoeSt2 
= 0. 

A /3 

It is now possible to use the stock constraint (2.5) and the forms of Y(t) and z(t) to 
calculate A. To do this it will be useful to solve the preceding expressions for t1 and 
t2, respectively: 

-1 In AYo(I+P) and t2 -1 n Y 
(3.1) tl ^ + n andt2= n 

Thus, 
T t\ t2 

so= z(t) dt = Y(t) dt + z(t) dt 

,fti r Jt2 e-pt YOeat 
- j Yoe6tdt j et-y+ /S -dt 
Jo A P 

Y= (etl 1- 1) (e-Pt2 - ePtl) - Yo(et2 - etl 

_Y^ /Xo(+f)\~' \_ i_( Y 2 _ \Yl 3) - Yb (( \Yo(1?fl))' - - ((Y?)4 - (\Yo(l+l)))\ 

A ) 

1- YO A SYo )_( AYo ( + `P ) 

P) 

Adding Yo/6 to both sides and writing X as A 5+p in the second term, we can factor 
-s 

A5+p from the remaining terms: 

Y- 
= ? Yo (Yo(l + a )-6 P _ ) ( 

-^rr-K )1+p 1 Y+ 6+P YO Yo (Y (1 + ) +1 - p 
(0 (_() 

So + A -6+P ) 

_T ~ p 
-s p 

From this expression, it is clear that A can be written as a function of the other 

parameters of the model. Some tedious algebraic manipulations give 

(3.2)1 ((1 6 +p (i _ 

(3.2) XA- - 1 - (1 + 
))5 -+I 

YO S Y 
6 p\ i) 
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The complete optimal paths for this example have now been described. To sum- 
marize, the optimal paths are, for consumption: 

Yoe1t, < t < t1, 

c(t)= tl < t < t2, 

Yoes3 t2 < t < T; 

for landfilling: 

Yoeat, O < t < tl, 

z (t) e-= 
t Y - e t < t <_ t2, 

O, t2 < t < T; 

and for recycling: 

(0, 0< t <ti, 

() Yoe6t l1 e-pt x(t) = f _+fi , e tl < t _< t2, 

1+/ ' t2 < t t<T, + + t2<t<T, 

where A, tl, and t2 are found from (3.1) and (3.2) above. 
These paths are shown in Figure 3.1, where time is on the horizontal axis and 

consumption, landfilling, and recycling, respectively, are on the vertical axes. Along 
an optimal path, beginning with t = 0, consumption rises with income (and is equal 
to income) until the switch time tl. For this initial interval, 0 < t < t1, all waste is 
landfilled, so the landfilling path is the same as the consumption path, and recycling is 
zero. In the middle period, t1 < t < t2, there is a mixture of landfilling and recycling, 
the former being phased out while the latter is phased in as the landfill reaches its 
capacity. The solution is given by the necessary conditions (1.6)-(1.9). After the sec- 
ond switch time t2, consumption follows the path Yoe t/(1 + P), there is no landfilling, 
and all waste is recycled. Notice that the path Yoe6t/(1 + P) is below the income path 
because the backstop method of waste disposal is more expensive than landfilling, and 
thus less income remains to be spent on consumption. The municipality starts out 
by consuming along the upper path Yoe6t but must eventually shift to the lower path 
Yoe6t/(1 + /) (assuming the landfill space is exhausted). Equation (2.1) determines 
the optimal way to make this shift, i.e., the optimal transition path between the two 
curves Yoeat and Yoeat/(1 + /). For the functional forms of Example 1, as shown in 
Figure 3.1, it is optimal for consumption to actually fall between times ti and t2. 

Figure 3.1 illustrates the optimal path for this specific example. But it may be 
worth noting which of the characteristics of an optimal path depend on functional 
forms and which do not. The most important characteristic that is dependent on 
functional forms of utility, income, and cost (and parameter values) is that not all 
segments of paths as illustrated may actually occur. For example, the value of ti as 
calculated from (3.1) and (3.2) may be less than zero. In such a case t1 is set to zero 
and the municipality does not have an initial period during which landfilling is used 
exclusively as the method of waste disposal. If the value of tl as calculated from (3.1) 
and (3.2) is greater than T, then tl is interpreted to be equal to T. In such a case an 
optimal solution is to never introduce recycling, since the initial landfill capacity is 
large enough to contain all waste for the entire planning period. Another result that 
depends on the functional forms is that, as in this particular example, consumption 
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Y(t) 
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^ 
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tl t2 
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Y(t)/(l + ) 

Optimal Recycling Path 

Fig. 3.1 Optimal controls in the case 3(t, x) is constant. 
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and landfilling always fall between times t1 and t2. Other utility functions, for exam- 
ple, can imply a different path for the transition interval between the "upper" and 
"lower" consumption paths. It will be seen in Example 2 that if the per unit marginal 
cost depends linearly on t and x, then consumption can indeed rise in the interval 
t < t < t2. 

Results that do not depend on functional forms include the fact that recycling 
always increases once it begins and that consumption grows (because income is grow- 
ing) when either landfilling or recycling is zero. And, for solutions that involve more 
than one of the segments shown in the figure, the pieces of the solution will always 
occur in the order shown. That is, an interval without recycling occurs before an in- 
terval during which both landfilling and recycling occur, which in turn occurs before 
an interval without landfilling. 

For the exercises that follow, we choose, somewhat arbitrarily, various sets of pa- 
rameters. In general, so and Yo are large relative to the other parameters. Parameters 
6 and p are small, say, around .03 (i.e., 3% rates); recall that 6 is the growth rate of 
income and that p, the discount rate, can actually be zero. Since waste disposal costs 
should be a small fraction of the price of consumption, the cost parameter 3 should 
be significantly less than 1, which is the implicit price of a unit of consumption. 

Exercise 1. Let / = 0.08, T = 10, s0 = 50, Yo = 25, p = 0.04, and 5 = 0.03. 
Calculate the user cost, A, for this set of parameters. What happens to the user cost 
if the stock size so = 40? Calculate t2 - ti for both stock sizes. Show that in general 
the time during which recycling is phased in, t2 - t, is independent of so and Y0. 

Exercise 2. (a) Experiment with different values of the initial landfill capacity 
so to find a solution with a value of tl computed from (3.1) and (3.2) that is less than 
zero. For such a parameter set, the municipality will begin by using both landfilling 
and recycling to dispose of its waste. Construct the optimal solution for this set of 
parameters. 

Repeat the exercise but adjust the initial income Yo rather than landfill capacity 
to find "tl < 0." Repeat again, this time adjusting the marginal recycling cost 3 to 
find another instance for which tl is initially computed to be less than zero. 

(b) Repeat part (a) with the goal of finding parameter sets with computed values 
of t2 > T. A municipality with such a parameter set will never have an interval of 
time (during the planning horizon) for which some landfilling is not optimal. Graph 
the solutions c(t), x(t), and z(t). 

(c) What is the interpretation if computed values of tl and t2 are both less than 
zero? both greater than the planning horizon T? 

Exercise 3. Many states in the United States require municipalities to recycle 
some proportion of their waste (typically between 25% and 50%) or to develop recy- 
cling plans to accomplish this goal. Calculate the initial landfill capacity so, where the 
municipality will recycle 25% by the end of the planning period. What are the effects 
of these laws on municipalities with large landfills? Are they necessary? (The latter 
two questions, of course, introduce issues of political economy into the discussion.) 

3.2. Example 2. The constant marginal cost function of the preceding example 
may be too simplistic an assumption. In this example it will be assumed that the 
cost function is an affine function of both the rate of recycling and time. One result 
of this more general cost function is that the values of tl, t2, and A can be computed 
only as implicit functions of the parameters. In keeping with the general assumptions 
in Dasgupta and Heal [3] concerning recycling costs, assume that costs rise with the 
level of recycling but fall when considered (only) as a function of time. Thus assume 
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3(t,x) = ax - a2t + a3, where al,a2,a3 > 0. The assumptions of a log utility 
function U(c(t)) = Inc(t), exponential income growth Y(t) = Yoe6t, and positive user 
cost (A > 0) are retained from the preceding example. 

Assume there is an interval tl < t < t2 during which the necessary conditions 

(1.6)-(1.9) are active. Consumption can now be written only by referring to recycling. 
Use (2.1) to get 

c(t) = ( + P (t, x(t))x(t) + P(t, x(t)) 
1 2alx(t) -a2t+a3 _pt 

A 2alx(t) - a2t + a3 +1 

The budget constraint (1.4), Y(t) = c(t) + 3(t, x(t))x(t), can be combined with the 
preceding equation to write recycling x(t) as an implicit function of time (for ti < 
t < t2): 

(3.3) Y(t) - 3(t,x(t))x(t) = ( 2ax(t) - a2t + a3 -t (3.3) / ( 
k/2aix(t) -0a2t + a3 + 1 

Landfilling during the same interval is again given only as a function of x(t), by using 
the disposal constraint (1.3), c(t) = x(t) + z(t): 

(3.4) z(t)= (2ax(t) 
- a2t + 

a3 
+ ePt -(t). 

1A 2alx(t) - a2t + a3 + 1- x 

As in the preceding example, it remains to use the continuity conditions (z(tl) = 
Y(t1), z(t2) = 0) and the stock constraint (2.5) to find tl, t2, and A. Since it is not 
possible to solve for tl, t2, and A as explicit functions of the other parameters, one 
way to approximate these values is to do so iteratively. Namely, make an initial guess 
of A (based perhaps on the easier case in Example 1), compute tl, t2, and landfill 
size so, and then adjust the value of A to get the desired value of so. (We have 
found Mathematica to be useful in this regard.) Using this procedure, to find tl, 
note that x(ti) = O, so solve (numerically) equation (3.3) for tl. Next observe that 
for t > t2, c(t2) = x(t2) (since the landfill is exhausted), so the budget constraint 
becomes Y(t) = (1 + /(t,x(t))) x(t). To find t2 and x(t2), use this version of the 
budget constraint and (3.3), both evaluated at t2, and solve numerically for t2 and 

x(t2). To compute the landfill capacity (recall that we are taking A as given, for the 

moment), use (3.3) to find values of t for t1 < t < t2 and then compute values for 
landfilling using (3.4). Compute enough values to be able to numerically integrate 
the stock constraint (2.5): so = foT z(t) dt = fot Y(t)dt + tt2 z(t)dt. The user cost 
A can now be adjusted to achieve the desired value of so after a few iterations of the 
process. 

General results when assuming an affine cost function 3(t, x(t)) are more rare than 
in the previous example. Of course, it is still the case that recycling, once initiated, 
will continue at an increasing rate for the duration of the planning period. Since this 
cost function generalizes the constant function from Example 1, it follows that there 
are parameter values ai 7 0 (i = 1, 2, 3) for which consumption c(t) falls during the 
phase in period t1 < t < t2. However, there also exist values of the ai for which 
consumption grows for ti < t < t2 and still other values which yield a nonmonotone 
consumption path for tl < t < t2- Similarly, while most often landfilling will fall for 
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tl < t < t2, there are parameter values for which landfilling will grow briefly during 
this period. The implication of this variability of the consumption and landfilling 
paths seems to be that some aspects of optimal waste management systems differ 
considerably between communities. 

Exercise 4. Starting with the parameter values given in Exercise 1, and letting 
al = 0.001, a2 = 0.001, and a3 = 0.08, graph the optimal c(t), x(t), and z(t) and verify 
that c(t) is decreasing during (tl, t2). Next increase a1 and a2 to get a consumption 
function that increases for all t. 

Exercise 5. There is anecdotal evidence suggesting that some people perceive 
utility from recycling that is distinct from the utility of consumption [12, p. 4]. To 
allow for this possibility, reformulate the optimal control problem as follows. Argu- 
ments can be made for either a concave or a convex utility of recycling, so compromise 
with a linear function, kx(t), with k small in comparison to the utility of consumption. 
The problem is now to maximize fT (U(c(t)) +kx(t))dt for some constant k, subject to 
the other constraints given in section 1. Using log utility, exponential income growth, 
and (for an easier exercise) a constant marginal cost of recycling, is it still the case 
that recycling, once begun, will grow over time? Is consumption monotone? 

4. Conclusion. The focus of this paper is on the adoption of recycling as a 
"backstop" waste disposal method for municipalities with a fixed landfill capacity. 
The model predicts that all municipalities will introduce recycling by the end of the 
planning period unless their initial landfill is so large that it can contain all the 
waste generated during the planning period. Once begun, recycling is phased in over 
time. After a municipality begins recycling, it will continue to recycle. Further, the 
amount of recycling increases because income rises over time. The amount of recycling 
depends, other things being equal, on the initial landfill capacity. The smaller the 
initial landfill capacity the greater the amount of recycling. By the end of the planning 
period, municipalities with a small enough landfill capacity may very well be recycling 
all of their waste. 

In the current political environment, many state governments are trying to en- 
courage municipalities to recycle, often by requiring that a certain proportion of waste 
be recycled or that a recycling plan be in place by a certain date. While these efforts 
may contribute to the greater good, such regulations need to be written in a way that 
is sensitive to the differences between municipalities (i.e., initial landfill capacities) 
that lead to differences in their optimal waste management plans. 
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